首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and effects of expression of the inhibitor gene in Escherichia coli.
Authors:Z Wang and  D W Mosbaugh
Institution:Clayton Foundation Biochemical Institute, University of Texas at Austin 78712.
Abstract:The uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 was cloned, and the effects of this inhibitor on Escherichia coli cells that contain uracil-DNA glycosylase activity were determined. A PBS2 genomic library was constructed by inserting EcoRI restriction fragments of PBS2 DNA into a plasmid pUC19 vector. The library was used to transform wild-type (ung+) E. coli, and the presence of the functional inhibitor gene was determined by screening for colonies that supported growth of M13mp19 phage containing uracil-DNA. A clone was identified that carried a 4.1-kilobase EcoRI DNA insert in the vector plasmid. Extracts of cells transformed with this recombinant plasmid lacked detectable uracil-DNA glycosylase activity and contained a protein that inhibited the activity of purified E. coli uracil-DNA glycosylase in vitro. The uracil-DNA glycosylase inhibitor expressed in these E. coli was partially purified and characterized as a heat-stable protein with a native molecular weight of about 18,000. Hence, we conclude that the PBS2 uracil-DNA glycosylase inhibitor gene was cloned and that the gene product has properties similar to those from PBS2-infected Bacillus subtilis cells. Inhibitor gene expression in E. coli resulted in (i) a weak mutator phenotype, (ii) a growth rate similar to that of E. coli containing pUC19 alone, (iii) a sensitivity to the antifolate drug aminopterin similar to that of cells lacking the inhibitor gene, and (iv) an increased resistance to the lethal effects of 5-fluoro-2'-deoxyuridine. These physiological properties are consistent with the phenotypes of other ung mutants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号