首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes
Authors:Martin Jonathan W  Mabury Scott A  O'Brien Peter J
Affiliation:Graduate Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ont., Canada M5S 2S2. Jon.Martin@ualberta.ca
Abstract:
Fluorotelomer alcohols (FTOHs; CF(3)(CF(2))(x)C(2)H(4)OH; where x=3, 5, 7, 9) are a novel class of polyfluorinated contaminants, recently detected in the North American atmosphere, that are possible precursors to the series of perfluoroalkyl carboxylates (PFCAs) in human blood. An in vivo rat study validated earlier independent work that poly- and per-fluoroalkyl carboxylates were metabolites of FTOHs, but our detection of several novel metabolites prompted us to examine their pathways in greater detail using isolated rat hepatocytes. Using 8:2 FTOH (i.e. where x=7) as a model compound, the metabolic products formed by isolated rat hepatocytes were identified, and three synthesized intermediates were incubated separately to elucidate the metabolic pathways. For 8:2 FTOH, a major fate was direct conjugation to form the O-glucuronide and O-sulfate. Using 2,4-dinitrophenylhydrazine (DNPH) trapping, the immediate oxidation product of 8:2 FTOH was identified as 8:2 fluorotelomer aldehyde (8:2 FTAL; CF(3)(CF(2))(7)CH(2)C(H)O). 8:2 FTAL was transient and eliminated HF non-enzymatically to yield 8:2 fluorotelomer alpha,beta-unsaturated aldehyde (8:2 FTUAL; CF(3)(CF(2))(6)CFCHC(H)O) which was also short-lived and reacted GSH and perhaps other endogenous nucleophiles. Four polyfluorinated acid intermediates were also detected, including 8:2 fluorotelomer carboxylate (8:2 FTCA; CF(3)(CF(2))(7)CH(2)C(O)O(-)), 8:2 fluorotelomer alpha,beta-unsaturated carboxylate (8:2 FTUCA; CF(3)(CF(2))(6)CFCHC(O)O(-)), tetrahydroperfluorodecanoate (CF(3)(CF(2))(6)(CH(2))(2)CO(2)(-)), and dihydroperfluorodecenoate (CF(3)(CF(2))(6)CHCHCO(2)(-)). The pathways leading to 8:2 FTCA and FTUCA involve oxidation of 8:2 FTAL, however, the pathways leading to the latter two polyfluorinated acids remain inconclusive. The fate of the unsaturated metabolites, 8:2 FTUAL and FTUCA, included conjugation with GSH and dehydrofluorination to yield alpha,beta-unsaturated GSH conjugates, and GS-8:2 FTUAL which was subsequently reduced to the corresponding alcohol. Perfluorooctanoate (PFOA) and minor amounts of perfluorononanoate (PFNA) were confirmed as metabolites of 8:2 FTOH, and the respective roles of beta- and alpha-oxidation mechanisms are discussed. The analogous acids, aldehydes, and conjugated metabolites of 4:2, 6:2, and 10:2 FTOH (i.e. where x=3, 5, and 9, respectively) were also detected, and metabolite profiles among FTOHs generally differed only in the length of their perfluoroalkyl chains. Preincubation with aminobenzotriazole, but not pyrazole, inhibited the formation of metabolites from all FTOHs, suggesting that their oxidation was catalyzed by P450, not alcohol dehydrogenase.
Keywords:DHPFCA, dihydroperfluoroalkyl carboxylate   DNPH, 2,4-dinitrophenylhydrazine   FTAL, fluorotelomer aldehyde   FTCA, fluorotelomer carboxylate   FTOH, fluorotelomer alcohol   FTUAL, fluorotelomer α,β-unsaturated aldehyde   FTUCA, fluorotelomer α,β-unsaturated carboxylate   HNA, 4-hydroxynonenoic acid   HNE, 4-hydroxynonenal   HPLC/MS/MS, high pressure liquid chromatography tandem mass spectrometry   PFCA, perfluoroalkyl carboxylate   PFNA, perfluorononanoate   PFOA, perfluorooctanoate   THPFCA, tetrahydroperfluoroalkyl carboxylate
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号