首页 | 本学科首页   官方微博 | 高级检索  
   检索      


beta-Oxidation and Glyoxylate Cycle Coupled to NADH: Cytochrome c and Ferricyanide Reductases in Glyoxysomes
Authors:Donaldson R P  Fang T K
Institution:Department of Biological Sciences, George Washington University, Washington, DC 20052.
Abstract:Glyoxysomes isolated from castor bean (Ricinus communis L., var Hale) endosperm had NADH:ferricyanide reductase and NADH:cytochrome c reductase activities averaging 720 and 140 nanomole electrons/per minute per milligram glyoxysomal protein, respectively. These redox activities were greater than could be attributed to contamination of the glyoxysomal fractions in which 1.4% of the protein was mitochondrial and 5% endoplasmic reticulum. The NADH:ferricyanide reductase activity in the glyoxysomes was greater than the palmitoyl-coenzyme A (CoA) oxidation activity which generated NADH at a rate of 340 nanomole electrons per minute per milligram glyoxysomal protein. Palmitoyl-CoA oxidation could be coupled to ferricyanide or cytochrome c reduction. Complete oxidation of palmitoyl-CoA, yielding 14 nanomole electrons/per nanomole palmitoyl-CoA, was demonstrated with the acceptors, NAL, cytochrome c, and ferricyanide. Malate was also oxidized by glyoxysomes, if acetyl-CoA, ferricyanide, or cytochrome c was present. Glyoxysomal NADH:ferricyanide reductase activity has the capacity to support the combined rates of NADH generation by β-oxidation and the glyoxylate cycle.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号