Regulation of the synthesis of surface protein in the cell cycle of E. coli B/r. |
| |
Authors: | A Boyd I B Holland |
| |
Affiliation: | Department of Genetics University of Leicester University Road Leicester LE1 7RH, England |
| |
Abstract: | We have studied the biogenesis of the envelope of E. coli B/r by measuring the synthesis of protein in separated inner and outer membranes during the cell cycle. While total protein and bulk inner membrane protein were synthesized continuously and at an exponentially increasing rate throughout the cycle, bulk outer membrane protein was synthesized at a constant rate throughout the cycle with an abrupt doubling in rate occurring 10–15 min before division. A similar pattern was observed when the rate of synthesis of an individual protein, the 36.5K outer membrane protein, was measured directly in total cell lysates. Neither thymine starvation nor changes in gene dosage of exponential cultures affected the synthesis of outer membrane protein, indicating that the doubling in rate is not controlled by a gene duplication mechanism. Other findings, however, further indicate that outer membrane protein synthesis is regulated in some way. Thus the concentration of 36.5K porin per unit surface area remained constant as the surface area/volume ratio varied widely with growth rate. We also obtained direct evidence for an overall limitation on the rate of synthesis of bulk outer membrane proteins; when a new class of outer membrane proteins was induced, the rate of synthesis of other surface proteins was correspondingly reduced. On the basis of these results, we discuss a model in which the linear growth of outer membrane protein results from a limitation of outer membrane polypeptide synthesis at the translational level, reflecting the linear expansion of the underlying peptidoglycan layer in the envelope. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|