Affiliation: | (1) Department of Biology, Queen’s University, ON K7L 3N6 Kingston, Canada;(2) Department of Ecology and Evolutionary Biology, University of California, 92697-2525 Irvine, CA, USA |
Abstract: | The evolutionary relationships between three major components of Darwinian fitness, development rate, growth rate and preadult survival, were estimated using a comparison of 55 distinct populations ofDrosophila melanogaster variously selected for age-specific fertility, environmental-stress tolerance and accelerated development. Development rate displayed a strong net negative evolutionary correlation with weight at eclosion across all selection treatments, consistent with the existence of a size-versus-time tradeoff between these characters. However, within the data set, the magnitude of the evolutionary correlation depended upon the particular selection treatments contrasted. A previously proposed tradeoff between preadult viability and growth rate was apparent only under weak selection for juvenile fitness components. Direct selection for rapid development led to sharp reductions in both growth rates and viability. These data add to the mounting results from experimental evolution that illustrate the sensitivity of evolutionary correlations to (i) genotype-by-environment (G X E) interaction, (ii) complex functional-trait interactions, and (iii) character definition. Instability, disappearance and reversal of patterns of genetic covariation often occur over short evolutionary time frames and as the direct product of selection, rather than some stochastic process. We suggest that the functional architecture of fitness is a rapidly evolving matrix with reticulate properties, a matrix that we understand only poorly. |