Abstract: | The release of iron from horse spleen ferritin by the chelating agents desferrioxamine B, rhodotorulic acid, 2,3-dihydroxybenzoate, 2,2′-bipyridyl and pyridine-2-aldehyde-2-pyridyl hydrazone (Paphy) has been studied in vitro. Ferritin prepared by classical procedures involving thermal denaturation releases its iron less effectively than ferritin isolated by a modified procedure that avoids this step. Desferrioxamine B and rhodotorulic acid are the most effective in releasing iron from both preparations of ferritin. When FMN is added, iron release by desferrioxamine B, rhodotorulic acid, and 2,3-dihydroxybenzoate was effectively blocked, whereas both bipyridyl and Paphy showed a marked simulation. A substantial increase in iron release was also observed for bipyridyl and Paphy with ascorbate; a less important increase was noted for rhodotorulic acid. EDTA exerted a marked inhibition of iron release from ferritin with rhodotorulic acid, 2,3-dihydroxybenzoate, bipyridyl, and Paphy. The effects of citrate and oxalate on iron release by the chelators was small. The effect of the concentration of flavin on iron release from ferritin by bipyridyl and desferrioxamine B have been studied. Desferrioxamine is unable to mobilize FeII from ferritin following reduction by reduced FMN, whereas bipyridyl can rapidly complex the ferrous iron. The results are discussed in the context of our current concepts of storage iron mobilization in the treatment of iron overload. |