首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Self-Incompatibility in the Absence of a Functional ARC1 Gene in Arabidopsis thaliana
Authors:June B. Nasrallah  Mikhail E. Nasrallah
Affiliation:Department of Plant Biology, Cornell University, Ithaca, New York 14853
Abstract:Self-incompatibility (SI) is the primary determinant of the outbreeding mode of sexual reproduction in the Brassicaceae. All Arabidopsis thaliana accessions analyzed to date carry mutations that disrupt SI functions by inactivating the SI specificity-determining S locus or SI modifier loci. S-locus genes isolated from self-incompatible close relatives of A. thaliana restore robust SI in several accessions that harbor only S-locus mutations and confer transient SI in accessions that additionally harbor mutations at modifier loci. Self-incompatible transgenic A. thaliana plants have proved to be valuable for analysis of the recognition and signaling events that underlie SI in the Brassicaceae. Here, we review results demonstrating that S-locus genes are necessary and sufficient for SI signaling and for restoration of a strong and developmentally stable SI phenotype in several accessions of A. thaliana. The data indicate that introduction of a functional E3 ligase-encoding ARC1 gene, which is deleted in all accessions that have been analyzed to date, is not required for SI signaling leading to inhibition of self pollen or for reversion of A. thaliana to its fully self-incompatible ancestral state.It is well established that specific pollen recognition in the self-incompatibility (SI) response of the Brassicaceae is determined by allele-specific interactions that occur at the stigma surface between two highly polymorphic proteins encoded in the S locus: the S-locus receptor kinase SRK and its ligand, the S-locus cysteine-rich protein SCR. Arabidopsis thaliana lacks a functional SI system and harbors nonfunctional S-locus variants that contain defective alleles of the SRK and/or SCR genes (Kusaba et al., 2001; Sherman-Broyles et al., 2007; Tang et al., 2007; Shimizu et al., 2008; Boggs et al., 2009a; Tsuchimatsu et al., 2010; Dwyer et al., 2013). Despite being highly self-fertile, A. thaliana can be made to express SI upon transformation with functional SRK-SCR gene pairs isolated from its self-incompatible close relatives (Nasrallah et al., 2002, 2004; Boggs et al., 2009a, 2009b). The first transfer of the SI trait into A. thaliana was achieved using the SRKb-SCRb gene pair isolated from the Sb locus of Arabidopsis lyrata (Kusaba et al., 2001; Nasrallah et al., 2002, 2004). Many of the subsequent studies that have been performed in the transgenic A. thaliana SRK-SCR system have used plants transformed with p548, a plasmid that we constructed by inserting the A. lyrata SRKb and SCRb genes with their 5′ and 3′ regulatory sequences into the pBIN+ binary vector (Nasrallah et al., 2004).Indriolo et al. (2014) recently used the p548 plasmid to generate SRKb-SCRb transformants and test the role of the ARM Repeat Containing1 (ARC1) gene in SI. ARC1 was originally identified as a Brassica napus protein that interacts with the SRK kinase domain in yeast (Gu et al., 1998), and it was subsequently inferred to be required for SI because downregulation of the ARC1 gene in B. napus (Stone et al., 1999) and A. lyrata (Indriolo et al., 2012), as well as overexpression of ARC1’s target, Exo70A1, in B. napus (Samuel et al., 2009), caused partial breakdown of the SI response. However, the involvement of the proposed SRK-ARC1-Exo70A1 pathway in SI has been questioned because the ARC1 gene was found to be deleted in all A. thaliana accessions analyzed to date (Kitashiba et al., 2011; Indriolo et al., 2012), including those in which the SRKb-SCRb transgenes confer a strong SI phenotype (Kitashiba et al., 2011). Additionally, overexpression of Exo70A1 did not cause weakening of the SI response in A. thaliana SRKb-SCRb plants (Kitashiba et al., 2011).Indriolo et al. (2014) reported on their characterization of the SI response in plants of the Sha and Columbia-0 (Col-0) accessions, which they either transformed with the p548 plasmid alone or cotransformed with p548 and a plasmid containing an ARC1 gene isolated from A. lyrata or B. napus. They concluded that, along with SRK and SCR, “ARC1 is the third component that is required to return A. thaliana to its ancestral self-incompatibility state.” However, this conclusion is inconsistent with results of previous studies of SI in transgenic A. thaliana SRK-SCR transformants, which have shown that several A. thaliana accessions are rendered fully self-incompatible by transformation with the p548 plasmid without the addition of a functional ARC1 gene. Contrary to Indriolo et al.’s assertion that in previous studies of A. thaliana SRK-SCR transformants, “the self-pollen rejection response was incomplete,” we reported that among 11 A. thaliana accessions tested by transformation with the p548 plasmid, five accessions (C24, Cvi-0, Hodja, Kas-2, and Sha) were converted to full SI by expression of the SRKb and SCRb genes alone (Nasrallah et al., 2004; Boggs et al., 2009a). Importantly, the SI phenotype of these self-incompatible SRKb-SCRb transformants faithfully recapitulates the SI phenotype of naturally self-incompatible Brassicaceae with respect to the four defining features of SI in this family: (1) site of pollen inhibition at the stigma surface, (2) intensity of the response, (3) developmental regulation over the course of stigma maturation, and (4) heritability. These features suggest that the inhibition of self pollen in self-incompatible A. thaliana SRK-SCR transformants is achieved via the same signaling pathway as that utilized by other self-incompatible Brassicaceae species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号