首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complete sequence of the 24-mer hemocyanin of the tarantula Eurypelma californicum. Structure and intramolecular evolution of the subunits
Authors:Voit R  Feldmaier-Fuchs G  Schweikardt T  Decker H  Burmester T
Institution:Division of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. R.Voit@dkfz-heidelberg.de
Abstract:Hemocyanins are large oligomeric respiratory proteins found in many arthropods and molluscs. The hemocyanin of the tarantula Eurypelma californicum is a 24-mer protein complex with molecular mass of 1, 726,459 Da that consists of seven different polypeptides (a-g), each occupying a distinct position within the native molecule. Here we report the complete molecular structure of the E. californicum hemocyanin as deduced from the corresponding cDNAs. This represents the first complex arthropod hemocyanin to be completely sequenced. The different subunits display 52-66% amino acid sequence identity. Within the subunits, the central domain, which bears the active center with the copper-binding sites A and B, displays the highest degree of identity. Using a homology modeling approach, the putative three-dimensional structure of individual subunits was deduced and compared. Phylogenetic analyses suggest that differentiation of the individual subunits occurred 400-550 million years ago. The hemocyanin of the stemline Chelicerata was probably a hexamer built up of six distinct subunit types a, b/c, d, e, f, and g, whereas that of the early Arachnida was originally a 24-mer that emerged after the differentiation of subunits b and c.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号