首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats
Authors:Nathalie Arnich  Lisiane Cunat  Marie-Claire Lanhers  Daniel Burnel
Institution:(1) Laboratoire de Chimie et Toxicologie des Métaux, Département Environment et Santé Publique, Faculté de Médecine, Université Henri Poincaré, Nancy I, 9 avenue de la Forêt de Haye, B.P. 184, 54505 Vandoeuvre-Les-Nancy Cedex, France
Abstract:This comparative study of the intestinal absorption of four toxic metals (aluminum, manganese, nickel, and lead) carried out in rats using the in situ intestinal perfusion technique was able to measure the partition of each metal between the intestine (intestinal retention), the blood circulation, and target tissues after 1 h. The perfused metal solutions were at concentrations likely to occur during oral intoxication. It was found that aluminum (48 and 64 mM), even as a citrate complex, crossed the brush border with difficulty (0.4% of the perfused amount); about 60% of this was retained in the intestine and the remainder was found in target tissues (about 36%). Conversely, lead (4.8-48 microM) penetrated the intestine more easily (about 35% of the perfused amount), was slightly retained (about 12% of the input), and was soon found in the tissues (about 58% of the input) and to a lesser degree in circulation (about 29%). Within the same concentration range, nickel and manganese showed certain similarities, such as a reduced crossing of the brush border proportional to the increase in the concentration perfused (0.17-9.5 mM). There was similar intestinal retention and absorption (about 80% and 20% of the input, respectively). Manganese crossed the brush border more easily and was diffused more rapidly into tissues. Finally, the addition of equimolar amounts of iron (4.7 mM) produced opposite effects on the absorption of the two elements, inhibiting manganese and showing a trend to increase in nickel absorption. This could be the result of competition between Fe2+ and Mn2+ for the same transcellular transporters and the slight predominance of paracellular mechanism in the event of "Fe2+-Ni2+" association.
Keywords:Nickel  aluminum  manganese  lead  intestinal absorption            in situ perfusion
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号