首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinesin: a molecular motor with a spring in its step
Authors:Thomas Neil  Imafuku Yasuhiro  Kamiya Tsutomu  Tawada Katsuhisa
Institution:Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan. n.thomas@bham.ac.uk
Abstract:A key step in the processive motion of two-headed kinesin along a microtubule is the 'docking' of the neck linker that joins each kinesin head to the motor's dimerized coiled-coil neck. This process is similar to the folding of a protein beta-hairpin, which starts in a highly mobile unfolded state that has significant entropic elasticity and finishes in a more rigid folded state. We therefore suggest that neck-linker docking is mechanically equivalent to the thermally activated shortening of a spring that has been stretched by an applied load. This critical tension-dependent step utilizes Brownian motion and it immediately follows the binding of ATP, the hydrolysis of which provides the free energy that drives the kinesin cycle. A simple three-state model incorporating neck-linker docking can account quantitatively for both the kinesin force-velocity relation and the unusual tension-dependence of its Michaelis constant. However, we find that the observed randomness of the kinesin motor requires a more detailed four-state model. Monte Carlo simulations of single-molecule stepping with this model illustrate the possibility of sub-8 nm steps, the size of which is predicted to vary linearly with the applied load.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号