首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice
Authors:Fiorentini Anna  Rosi Maria Cristina  Grossi Cristina  Luccarini Ilaria  Casamenti Fiorella
Institution:Department of Pharmacology, University of Florence, Florence, Italy.
Abstract:

Background

Alzheimer''s disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD.

Methodology/Principal Findings

The double transgenic (Tg) CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium''s ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases.

Conclusions

Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号