首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytochemical Localization of Reserves during Seed Development in Arabidopsis thaliana under Spaceflight Conditions
Authors:KUANG  ANXIU; XIAO  YING; MUSGRAVE  MARY E
Institution:Department of Plant Pathology and Crop Physiology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
Abstract:Successful development of seeds under spaceflight conditionshas been an elusive goal of numerous long-duration experimentswith plants on orbital spacecraft. Because carbohydrate metabolismundergoes changes when plants are grown in microgravity, developingseed storage reserves might be detrimentally affected duringspaceflight. Seed development in Arabidopsis thaliana plantsthat flowered during 11 d in space on shuttle mission STS-68has been investigated in this study. Plants were grown to therosette stage (13 d) on a nutrient agar medium on the groundand loaded into the Plant Growth Unit flight hardware 18 h priorto lift-off. Plants were retrieved 3 h after landing and siliqueswere immediately removed from plants. Young seeds were fixedand processed for microscopic observation. Seeds in both theground control and flight plants are similar in their morphologyand size. The oldest seeds from these plants contain completelydeveloped embryos and seed coats. These embryos developed radicle,hypocotyl, meristematic apical tissue, and differentiated cotyledons.Protoderm, procambium, and primary ground tissue had differentiated.Reserves such as starch and protein were deposited in the embryosduring tissue differentiation. The aleurone layer contains alarge quantity of storage protein and starch grains. A seedcoat developed from integuments of the ovule with gradual changein cell composition and cell material deposition. Carbohydrateswere deposited in outer integument cells especially in the outsidecell walls. Starch grains decreased in number per cell in theintegument during seed coat development. All these characteristicsduring seed development represent normal features in the groundcontrol plants and show that the spaceflight environment doesnot prevent normal development of seeds in Arabidopsis. Arabidopsis ; spaceflight; embryo; endosperm; seed coat; storage reserves
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号