首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of the symbiosis between fungal endophytes and Atractylodes lancea on rhizosphere and phyllosphere microbial communities
Authors:Teng Yang  Wei Du  Jun Zhou  Xing-Xiang Wang  Chuan-Chao Dai
Institution:1. Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, People’s Republic of China
2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People’s Republic of China
3. Jiangxi Key Laboratory of Ecological Research of Red Soil, Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, People’s Republic of China
Abstract:Tissue-cultured plantlets of Atractylodes lancea were inoculated with the endophytes AL4 (Cunninghamella sp.) and AL12 (Gilmaniella sp.), and subsequently transplanted into soil after hardening of the tissue-cultured plantlets. We investigated rhizospheric and phyllospheric microbial communities using culture-based and culture-independent methods. Energy spectrum analysis, high performance liquid chromatography, and other assay methods were employed to quantify the elements in the leaves, and the soluble sugars, free amino acids and organic acids in the rhizosphere. The results showed that the endophytes enhanced the diversity and size of the rhizospheric microbial populations. In the phyllosphere, AL4 (Cunninghamella sp.) enhanced the diversity and size of bacterial populations, while AL12 (Gilmaniella sp.) enhanced the diversity and size of fungal populations. The dominant bacterial genera were Microbacterium, Kocuria and Sphingomon in the endophytes-inoculated groups, and Acinetobacter and Bacillus in the endophytes-free group. While Acremonium and Curvularia were the dominant fungal genera in the phyllosphere of endophytes-inoculated groups, Fusarium and Penicillum were most common in the endophytes-free group. AL4 (Cunninghamella sp.) enhanced the rhizospheric microbial population size and diversity by increasing rhizospheric free amino acids, while AL12 (Gilmaniella sp.) altered the rhizospheric microbes by changing concentration of soluble sugars in the rhizosphere. Elemental levels in the phyllosphere and the nutrients in the rhizosphere varied among the treatments and may also have influenced the microbial communities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号