Testing a ‘genes‐to‐ecosystems’ approach to understanding aquatic–terrestrial linkages |
| |
Authors: | Gregory M. Crutsinger Seth M. Rudman Mariano A. Rodriguez‐Cabal Athena D. McKown Takuya Sato Andrew M. MacDonald Julian Heavyside Armando Geraldes Edmund M. Hart Carri J. LeRoy Rana W. El‐Sabaawi |
| |
Affiliation: | 1. Department of Zoology, University of British Columbia, , Vancouver, BC, V6T1Z4 Canada;2. Department of Forest and Conservation Sciences, University of British Columbia, , Vancouver, BC, V6T 1Z4 Canada;3. Department of Biology, Graduate school of Science, Kobe University, , Nada‐ku, Kobe, 657‐8501 Japan;4. Department of Botany, University of British Columbia, , Vancouver, BC, V6T 1Z4 Canada;5. Environmental Studies Program, The Evergreen State College, , Olympia, WA, 98505 USA;6. Department of Biology, University of Victoria, , Victoria, BC, V8P 5C2 Canada |
| |
Abstract: | A ‘genes‐to‐ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome‐wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after‐life’ effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic–terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes. |
| |
Keywords: | aquatic‐terrestrial linkages community genetics decomposition genes‐to‐ecosystems GWAS mesocosms
Populus trichocarpa
|
|
|