首页 | 本学科首页   官方微博 | 高级检索  
     


Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators
Authors:Overhaus Marcus  Moore Beverley A  Barbato Joel E  Behrendt Florian F  Doering Julia G  Bauer Anthony J
Affiliation:Department of Medicine/Gastroenterology, University of Pittsburgh, PA 15261, USA.
Abstract:Highly inducible heme oxygenase (HO)-1 is protective against acute and chronic inflammation. HO-1 generates carbon monoxide (CO), ferrous iron, and biliverdin. The aim of this study was to investigate the protective effects of biliverdin against sepsis-induced inflammation and intestinal dysmotility. Cecal ligation and puncture (CLP) was performed on Sprague-Dawley rats under isoflurane anesthesia with and without intraperitoneal biliverdin injections, which were done before, at the time of CLP, and after CLP. In vivo gastrointestinal transit was carried out with fluorescein-labeled dextran. Jejunal circular muscle contractility was quantified in vitro using organ bath-generated bethanechol dose-response curves. Neutrophilic infiltration into the muscularis externa was quantified. The jejunal muscularis was studied for cytokine mRNA expressions [interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, inducible nitric oxide synthase, cyclooxygenase-2, biliverdin, IL-10, and HO-1] using real-time RT-PCR. Biliverdin treatment prevented the sepsis-induced suppression of gastrointestinal muscle contractility in vivo and in vitro and significantly decreased neutrophilic infiltration into the jejunal muscularis. Inflammatory mRNA expressions for small bowel IL-6 and MCP-1 were significantly reduced after biliverdin treatment in CLP-induced septic animals compared with untreated septic animals. The anti-inflammatory mediator expression of small bowel IL-10 was significantly augmented after CLP at 3 h compared with untreated septic animals. These findings demonstrate that biliverdin attenuates sepsis-induced morbidity to the intestine by selectively modulating the inflammatory cascade and its subsequent sequelae on intestinal muscularis function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号