首页 | 本学科首页   官方微博 | 高级检索  
     


Electroporation of curved lipid membranes in ionic strength gradients
Authors:Neumann   Kakorin
Affiliation:Faculty of Chemistry, University of Bielefeld, Germany. eberhard.neumann@uni-bielefeld.de
Abstract:
A thermodynamic theory for the membrane electroporation of curved membranes such as those of lipid vesicles and cylindrical membrane tubes has been developed. The theory covers in particular the observation that electric pore formation and shape deformation of vesicles and cells are dependent on the salt concentration of the suspending solvent. It is shown that transmembrane salt gradients can appreciably modify the electrostatic part of Helfrich's spontaneous curvature, elastic bending rigidity and Gaussian curvature modulus of charged membranes. The Gibbs reaction energy of membrane electroporation can be explicitely expressed in terms of salt gradient-dependent contributions of bending, the ionic double layers and electric surface potentials and dielectric polarisation of aqueous pores. In order to cover the various physical contribution to the chemical process of electroporation-resealing, we have introduced a generalised chemophysical potential covering all generalised forces and generalised displacements in terms of a transformed Gibbs energy formalism. Comparison with, and analysis of, the data of electrooptical relaxation kinetic studies show that the Gibbs reaction energy terms can be directly determined from turbidity dichroism (Planck's conservative dichroism). The approach also quantifies the electroporative cross-membrane material exchange such as electrolyte release, electrohaemolysis of red blood cells or uptake of drugs and dyes and finally gene DNA by membrane electroporation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号