首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Disease and the extended phenotype: parasites control host performance and survival through induced changes in body plan
Authors:Goodman Brett A  Johnson Pieter T J
Institution:Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America.
Abstract:

Background

By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite''s phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions.

Methodology/Principal Findings

By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ~50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period.

Conclusions/Significance

Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号