首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A multibody modelling approach to determine load sharing between passive elements of the lumbar spine
Authors:Alireza Abouhossein  Bernhard Weisse
Institution:1. EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Mechanical Systems Engineering , 129 Ueberlandstrasse, CH-8600, Dübendorf, Switzerland;2. Institute for Surgical Technology and Biomechanics, University of Bern , Bern, Switzerland;3. EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Mechanical Systems Engineering , 129 Ueberlandstrasse, CH-8600, Dübendorf, Switzerland
Abstract:The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion–extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.
Keywords:rigid body simulation  lumbar spine  passive elements  ligaments  load sharing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号