首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On learning dynamics underlying the evolution of learning rules
Institution:1. IRSTEA UR LISC, Laboratoire d’ingénierie pour les Systèmes Complexes, 9 avenue Blaise-Pascal CS 20085, Aubière 63178, France;2. Complex Systems Institute of Paris Île-de-France, 113 rue Nationale, 75013, Paris, France;3. CIMAT, De Jalisco S-N, Valenciana, Guanajuato, Gto. 36240, Mexico;4. Institut de Systématique, Evolution et Biodiversité, CNRS/MNHN/Sorbonne Université/EPHE, Museum National d’Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France;1. Insitute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, China;2. Jilin Engineering Laboratory for Quantum Information Technology, Changchun 130052, China;3. School of Physics, Nankai University, Tianjin 300071, China
Abstract:In order to understand the development of non-genetically encoded actions during an animal’s lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Keywords:Fluctuating environments  Evolutionary game theory  Stochastic approximation  Reinforcement learning  Fictitious play  Producer–scrounger game
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号