首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The nature of spatial transitions in the Arctic
Authors:H E Epstein  J Beringer  W A Gould  A H Lloyd  C D Thompson  F S Chapin III    G J Michaelson  C L Ping  T S Rupp  D A Walker
Institution:Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA;, School of Geography and Environmental Science, Monash University, Clayton, Vic., Australia;, International Institute of Tropical Forestry, USDA Forest Service, Rio Pedras, PR;, Department of Biology, Middlebury College, Middlebury, VT;, Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK;, Palmer Research Station, University of Alaska-Fairbanks, Palmer, AK;and Department of Forest Sciences, University of Alaska-Fairbanks, Fairbanks, AK, USA
Abstract:Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundra‐forest region of the Seward Peninsula, Alaska Methods We synthesize information from numerous studies on tundra and treeline ecosystems in an effort to document the spatial changes that occur across four arctic transitions. These transitions are: (i) the transition between High‐Arctic and Low‐Arctic systems, (ii) the transition between moist non‐acidic tundra (MNT) and moist acidic tundra (MAT, also referred to as tussock tundra), (iii) the transition between tussock tundra and shrub tundra, (iv) the transition between tundra and forested systems. By documenting the nature of these spatial transitions, in terms of their environmental controls and vegetation patterns, we develop a conceptual model of temporal dynamics of arctic ecotones in response to environmental change. Results Our observations suggest that each transition is sensitive to a unique combination of controlling factors. The transition between High and Low Arctic is sensitive primarily to climate, whereas the MNT/MAT transition is also controlled by soil parent material, permafrost and hydrology. The tussock/shrub tundra transition appears to be responsive to several factors, including climate, topography and hydrology. Finally, the tundra/forest boundary responds primarily to climate and to climatically associated changes in permafrost. There were also important differences in the demography and distribution of the dominant plant species across the four vegetation transitions. The shrubs that characterize the tussock/shrub transition can achieve dominance potentially within a decade, whereas spruce trees often require several decades to centuries to achieve dominance within tundra, and Sphagnum moss colonization of non‐acidic sites at the MNT/MAT boundary may require centuries to millennia of soil development. Main conclusions We suggest that vegetation will respond most rapidly to climatic change when (i) the vegetation transition correlates more strongly with climate than with other environmental variables, (ii) dominant species exhibit gradual changes in abundance across spatial transitions, and/or (iii) the dominant species have demographic properties that allow rapid increases in abundance following climatic shifts. All three of these properties characterize the transition between tussock tundra and low shrub tundra. It is therefore not surprising that of the four transitions studied this is the one that appears to be responding most rapidly to climatic warming.
Keywords:Alaska  arctic  boreal forest  climate change  ecotones  spatial vegetation patterns  spatial transitions  treeline  tundra  vegetation dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号