首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mesophyll conductance in land surface models: effects on photosynthesis and transpiration
Authors:Jürgen Knauer  Snke Zaehle  Martin G De Kauwe  Vanessa Haverd  Markus Reichstein  Ying Sun
Institution:Jürgen Knauer,Sönke Zaehle,Martin G. De Kauwe,Vanessa Haverd,Markus Reichstein,Ying Sun
Abstract:The CO2 transfer conductance within plant leaves (mesophyll conductance, gm) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm, which comprises the re‐adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf‐level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Keywords:leaf internal CO2 transfer  plant gas exchange  photosynthesis  transpiration  Earth system modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号