首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reducing methane on-farm by feeding diets high in fat may not always reduce life cycle greenhouse gas emissions
Authors:S Richard O Williams  Peter D Fisher  Tony Berrisford  Peter J Moate  Keith Reynard
Institution:1. Department of Primary Industries, Future Farming Systems Research Division, 1301 Hazeldean Road, Ellinbank, VIC, 3821, Australia
2. Department of Primary Industries, Future Farming Systems Research Division, 255 Ferguson Rd, Tatura, VIC, 3616, Australia
3. Department of Primary Industries, Farm Services Victoria, Cnr Fenwick and Little Malop, Geelong, 3220, Australia
4. Department of Primary Industries, Future Farming Systems Research Division, Cnr Midland Hwy and Taylor St, Epsom, VIC, 3551, Australia
Abstract:

Purpose

To consider whether feed supplements that reduce methane emissions from dairy cows result in a net reduction in greenhouse gas (GHG) intensity when productivity changes and emissions associated with extra manufacturing and management are included.

Methods

A life cycle assessment was undertaken using a model farm based on dairy farms in Victoria, Australia. The system boundary included the creation of farm inputs and on-farm activities up to the farm gate where the functional unit was 1 L of fat and protein corrected milk (FPCM). Electricity and diesel (scaled per cow), and fertiliser inputs (scaled on farm size) to the model farm were based on average data from a survey of farms. Fertiliser applied to crops was calculated per area of crop. Animal characteristics were based on available data from farms and literature. Three methane-reducing diets (containing brewers grain, hominy or whole cotton seed) and a control diet (cereal grain) were modelled as being fed during summer, with the control diet being fed for the remainder of the year in all cases.

Results and discussion

Greenhouse gas intensity (kg CO2-eq/L FPCM) was lower than the control diet when the hominy (97 % compared with control) and brewers grain (98 %) diets were used but increased when the whole cottonseed diet was used (104 %). On-farm GHG emissions (kg CO2-eq) were lower than the control diet when any of the methane-reducing diets were used (98 to 99.5 % of emissions when control diet fed). Diesel use in production and transport of feed supplements accounted for a large portion (63 to 93 %) of their GHG intensity (kg CO2-eq/t dry matter). Adjusting fertiliser application, changing transport method, changing transport fuel, and using nitrification inhibitors all had little effect on GHG emissions or GHG intensity.

Conclusions

Although feeding strategies that reduce methane emissions from dairy cows can lower the GHG emissions up to the farm gate, they may not result in lower GHG intensities (g CO2-eq/L FPCM) when pre-farm emissions are included. Both transport distance and the effect of the feed on milk production have important impacts on the outcomes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号