首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Primary structure of mannuronate lyases SP1 and SP2 fromTurbo cornutus and involvement of the hydrophobic C-terminal residues in the protein stability
Authors:Tsuyoshi Muramatsu  Kenji Komori  Narumi Sakurai  Koji Yamada  Yasuyuki Awasaki  Kazumasa Fukuda and Tatsuya Oda
Institution:(1) Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 852 Nagasaki, Japan
Abstract:The complete amino acid sequences of two isoforms, SP1 and SP2, of mannuronate lyase from a wreath shell,Turbo cornutus, were determined to elucidate amino acid residues responsible for causing the more stable protein conformation of SP2. The sequences of the two isoforms were identical except for two hydrophobic C-terminal amino acid residues of SP2, Ile and Leu, which were additionally attached to Thr of the C-terminal residue of SP1 (253 residues in total). The molecular weight of SP2 was calculated to be 28,912 from the amino acid sequence data. Two disulfide bond cross-linkages were found to be between 106 and 115 and between 145 and 150, and a partially buried single SH group was located at 236. A carbohydrate chain that consisted of 3 GlcNAc, 3 Fuc, and 1 Man was anchored on Asn-105 in a typical carbohydrate-binding motif of Asn-X-Ser. This is the first evidence of the primary structure of mannuronate lyase, and no significant homology of the amino acid sequence among other proteins was found. The C-terminal truncated SP2, which was produced by digestion with carboxypeptidase Y and corresponded structurally to SP1, showed a thermal stability identical to that of SP1. These results indicate that the higher stability of SP2 than SP1 arises from the presence of the C-terminal two hydrophobic amino acid residues.
Keywords:Mannuronate lyase  amino acid sequence  stability  disulfide bond  C-terminal residue
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号