首页 | 本学科首页   官方微博 | 高级检索  
   检索      


2'-Versus 3'-OH specificity in tRNA aminoacylation. Further support for the "secondary cognition" proposal.
Authors:B Alford  S M Hecht
Abstract:Purified Escherichia coli tRNAAla and tRNALys were each converted to modified species terminating in 2'- and 3'-deoxyadenosine. The modified species were tested as substrates for activation by their cognate aminoacyl-tRNA synthetases and for misacylation with phenylalanine by yeast phenylalanyl-tRNA synthetase. E. coli alanyl- and lysyl-tRNA synthetases normally aminoacylate their cognate tRNA's exclusively on the 3'-OH group, while yeast phenylalanyl-tRNA synthetase utilizes only the 2' position on its own tRNA. Therefore, the finding that the phenylalanyl-tRNA synthetase activated only those modified tRNAAla and tRNALys species terminating in 3'-deoxyadenosine indicated that the position of aminoacylation in this case was specified entirely by the enzyme, an observation relevant to the more general problem of the reason(s) for using a particular site for aminoacylation and maintaining positional specificity during evolution. Initial velocity studies were carried out using E. coli tRNAAla and both alanyl- and phenylalanyl-tRNA synthetases. As noted in other cases, activation of the modified and unmodified tRNA's had essentially the same associated Km values, but in each case the Vmax determined for the modified tRNA was smaller.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号