首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of new 2,3-benzodiazepines in rat plasma using high-performance liquid chromatography with ultraviolet detection
Authors:Milena Rizzo, Giovambattista De Sarro, Maria Zappal  ,Alba Chimirri
Affiliation:a Chair of Chemistry, School of Pharmacy at Catanzaro, University of Catanzaro, Complesso “Ninì Barbieri”, 88021 Roccelletta di Borgia, Catanzaro, Italy;b Chair of Pharmacology, Department of Experimental and Clinical Medicine, School of Medicine at Catanzaro, University of Catanzaro, Catanzaro, Italy;c Department of Medicinal Chemistry, School of Pharmacy, University of Messina, Messina, Italy
Abstract:A method for the analysis of [1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one] (CFM-2) and its analogues CFM-3, CFM-4 and CFM-5 in rat plasma was developed. The 2,3-benzodiazepines (2,3-BZs) were extracted by liquid–liquid extraction and analyzed using high-performance liquid chromatography (HPLC) with ultraviolet detection (UV) at 240 nm. The method exhibited a large linear range from 0.05 to 2 μg/ml with an intra-assay accuracy for all studied compounds ranging from 92 to 105.5%; whereas the intra-assay precision ranged from 0.59 to 8.16% in rat plasma. The inter-assay accuracy of CFM-2, CFM-4 and their 3-methyl derivatives, CFM-3 and CFM-5 ranged from 92.2 to 107% and the inter-assay precision ranged from 2.17 to 11.9% in rat plasma. The lower limit of detection was 5.5 ng/ml for CFM-2, 6.5 ng/ml for CFM-3, 7 ng/ml for CFM-4 and 8.5 ng/ml for CFM-5 in rat plasma. The pharmacokinetic study demonstrated that 2,3-BZs achieved a peak plasma concentration between 45 and 75 min after drug administration. Moreover, we observed that plasma chromatograms of rats treated with CFM-3, CFM-4 and CFM-5, respectively, showed a peak consistent with CFM-2. Our study suggests that CFM-4, CFM-5 and CFM-3 are prodrugs of CFM-2, in which they are biotransformed in vivo via different metabolic pathways. In particular, CFM-2 has been proven to possess anticonvulsant activity in various models of seizures, acting as α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist.
Keywords:Benzodiazepines
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号