首页 | 本学科首页   官方微博 | 高级检索  
     


The Role of the Disulfide Bridge in the Stability and Structural Integrity of Ovalbumin Evaluated by Site-Directed Mutagenesis
Abstract:To provide a molecular explanation of the role of the disulfide (SS) bridge in the thermostability and structural integrity of ovalbumin (OVA), we prepared SS-mutated OVAs in which SS-forming residues were replaced by Ala or Ser (C73A, C73S, C120A, and C73/120A), and compared the conformation, thermostability, susceptibility to elastase, and formation of heat-stable OVA (S-OVA) with those of the wild-type. The circular dichroism (CD) and tryptophan fluorescence spectra revealed that the SS-mutated OVAs assumed a native-like conformation similar to the wild-type. The thermal denaturation temperature for the SS-mutated OVAs was significantly lower than that for the wild-type. C73S, C120A, and C73/120A mutants converted to S-OVA on alkaline treatment. Analyses for elastase digestion fragments showed that a non-native SS bridge was generated in all SS-mutated OVAs, but non-native SS-pairing did not contribute to thermostability. Hence, we concluded that the presence of the original SS bridge in OVA contributes to conformational stability but is not directly related to the conversion to S-OVA.
Keywords:ovalbumin  disulfide bridge  conformational stability  S-ovalbumin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号