首页 | 本学科首页   官方微博 | 高级检索  
     


Identification and Prediction of Diabetic Sensorimotor Polyneuropathy Using Individual and Simple Combinations of Nerve Conduction Study Parameters
Authors:Alanna Weisman  Vera Bril  Mylan Ngo  Leif E. Lovblom  Elise M. Halpern  Andrej Orszag  Bruce A. Perkins
Affiliation:1. Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.; 2. Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.; Medical University Innsbruck, Austria,
Abstract:

Objective

Evaluation of diabetic sensorimotor polyneuropathy (DSP) is hindered by the need for complex nerve conduction study (NCS) protocols and lack of predictive biomarkers. We aimed to determine the performance of single and simple combinations of NCS parameters for identification and future prediction of DSP.

Materials and Methods

406 participants (61 with type 1 diabetes and 345 with type 2 diabetes) with a broad spectrum of neuropathy, from none to severe, underwent NCS to determine presence or absence of DSP for cross-sectional (concurrent validity) analysis. The 109 participants without baseline DSP were re-evaluated for its future onset (predictive validity). Performance of NCS parameters was compared by area under the receiver operating characteristic curve (AROC).

Results

At baseline there were 246 (60%) Prevalent Cases. After 3.9 years mean follow-up, 25 (23%) of the 109 Prevalent Controls that were followed became Incident DSP Cases. Threshold values for peroneal conduction velocity and sural amplitude potential best identified Prevalent Cases (AROC 0.90 and 0.83, sensitivity 80 and 83%, specificity 89 and 72%, respectively). Baseline tibial F-wave latency, peroneal conduction velocity and the sum of three lower limb nerve conduction velocities (sural, peroneal, and tibial) best predicted 4-year incidence (AROC 0.79, 0.79, and 0.85; sensitivity 79, 70, and 81%; specificity 63, 74 and 77%, respectively).

Discussion

Individual NCS parameters or their simple combinations are valid measures for identification and future prediction of DSP. Further research into the predictive roles of tibial F-wave latencies, peroneal conduction velocity, and sum of conduction velocities as markers of incipient nerve injury is needed to risk-stratify individuals for clinical and research protocols.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号