Bacterial extract cantastim activates macrophages via TLR-2 |
| |
Authors: | Caraş Iuliana Tucureanu Cătălin Pitica Ramona Sălăgeanu Aurora |
| |
Affiliation: | Infection and Immunity Laboratory, Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Bucharest, Romania. immuno@canlacuzino.ro |
| |
Abstract: | CANTASTIM is a second generation bacterial immunomodulator. The aim of this study was to examine the mechanism by which bacterial immunomodulator CANTASTIM induces production of inflammatory cytokines in monocytes/macrophages. Proinflammatory cytokines were induced in PMA-differentiated THP-1 cells by stimulation with TLR agonists and CANTASTIM in the presence or absence of anti-TLR blocking antibodies or isotype matched control antibodies. Also, RNA interference was used to knockdown TLR2 or TLR4 expression in PMA-differentiated THP-1 cells before stimulation. As expected, induction of TNF-alpha and IL-6 by TLR4 agonist LPS was inhibited in a significant manner by anti-TLR4 but not by anti-TLR2 antibody. Unexpectedly, treatment with anti-LR2 blocking antibody inhibited only IL-6 production induced by Pam3CSK4 while the level of TNF-alpha was unchanged. When cells were stimulated by TLR2 agonist heat-killed Listeria monocytogenes the release of TNF-alpha was significantly attenuated by anti-TLR2 antibodies. Silencing of TLR2 led to a statistically significant inhibition of TNF-alpha secretion induced by TLR2 agonist while siRNA silencing of TLR4 did not affect the response to TLR2 agonist. Cells exposed to CANTASTIM produced significant levels of pro-inflammatory cytokines but the levels were lower than LPS-stimulated cells. Production of both cytokines was inhibited by treatment with anti-TLR2 blocking antibody and not by anti-TLR4 antibody. Silencing of TLR2 led to a statistically significant inhibition of TNF-a secretion induced by CANTASTIM while silencing of TLR4 had no effect on the response to CANTASTIM. These results support the hypothesis that CANTASTIM may exert its immunomodulatory and adjuvant activities through interaction of its bacterial components with TLR2. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|