首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The structure of an archaeal pilus
Authors:Wang Ying A  Yu Xiong  Ng Sandy Y M  Jarrell Ken F  Egelman Edward H
Institution:1 Department of Biochemistry and Molecular Genetics, University of Virginia, Box 800733, Charlottesville, VA 22908-0733, USA
2 Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
Abstract:Bacterial pili are involved in a host of activities, including motility, adhesion, transformation, and immune escape. Structural studies of these pili have shown that several distinctly different classes exist, with no common origin. Remarkably, it is now known that the archaeal flagellar filament appears to have a common origin with the bacterial type IV pilus, and assembly in both systems involves hydrophobic N-terminal α-helices that form three-stranded coils in the center of these filaments. Recent work has identified further genes in archaea as being similar to bacterial type IV pilins, but the function or structures formed by such gene products was unknown. Using electron cryo-microscopy, we show that an archaeal pilus from Methanococcus maripaludis has a structure entirely different from that of any of the known bacterial pili. Two subunit packing arrangements were identified: one has rings of four subunits spaced by ∼ 44 Å and the other has a one-start helical symmetry with ∼ 2.6 subunits per turn of a ∼ 30 Å pitch helix. Remarkably, these schemes appear to coexist within the same filaments. For the segments composed of rings, the twist between adjacent rings is quite variable, while for the segments having a one-start helix there is a large variability in both the axial rise and the twist per subunit. Since this pilus appears to be assembled from a type IV pilin-like protein with a hydrophobic N-terminal helix, it provides yet another example of how different quaternary structures can be formed from similar building blocks. This result has many implications for understanding the evolutionary divergence of bacteria and archaea.
Keywords:helical polymers  polymorphisms  cryo-EM  quaternary structure  scanning transmission EM
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号