首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tumour necrosis factor activates the mitogen-activated protein kinases p38alpha and ERK in the synovial membrane in vivo
Authors:Görtz Birgit  Hayer Silvia  Tuerck Birgit  Zwerina Jochen  Smolen Josef S  Schett Georg
Institution:Division of Rheumatology, Department of Internal Medicine III, University of Vienna, Vienna, Austria.
Abstract:Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF transgenic mice--an in vivo model of TNF-induced arthritis--to examine phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38MAPKalpha in the inflamed joints by means of immunoblot and immunohistochemistry. In addition, the effects of systemic blockade of TNF, IL-1 and receptor activator of nuclear factor-kappaB (RANK) ligand on the activation of MAPKs were assessed. In vivo, overexpression of TNF induced activation of p38MAPKalpha and ERK in the synovial membrane, whereas activation of JNK was less pronounced and rarely observed on immunohistochemical analysis. Activated p38MAPKalpha was predominantly found in synovial macrophages, whereas ERK activation was present in both synovial macrophages and fibroblasts. T and B lymphocytes did not exhibit major activation of any of the three MAPKs. Systemic blockade of TNF reduced activation of p38MAPKalpha and ERK, whereas inhibition of IL-1 only affected p38MAPKalpha and blockade of RANK ligand did not result in any decrease in MAPK activation in the synovial membrane. These data indicate that TNF preferentially activates p38MAPKalpha and ERK in synovial membrane exposed to TNF. This not only suggests that targeted inhibition of p38MAPKalpha and ERK is a feasible strategy for blocking TNF-mediated effects on joints, but it also shows that even currently available methods to block TNF effectively reduce activation of these two MAPKs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号