首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of the hydrophobic ligand binding pocket of the S1P1 receptor
Authors:Fujiwara Yuko  Osborne Daniel A  Walker Michelle D  Wang De-an  Bautista Debra A  Liliom Karoly  Van Brocklyn James R  Parrill Abby L  Tigyi Gabor
Affiliation:Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
Abstract:
Sphingosine 1-phosphate (S1P), a naturally occurring sphingolipid mediator and also a second messenger with growth factor-like actions in almost every cell type, is an endogenous ligand of five G protein-coupled receptors (GPCRs) in the endothelial differentiation gene family. The lack of GPCR crystal structures sets serious limitations to rational drug design and in silico searches for subtype-selective ligands. Here we report on the experimental validation of a computational model of the ligand binding pocket of the S1P1 GPCR surrounding the aliphatic portion of S1P. The extensive mutagenesis-based validation confirmed 18 residues lining the hydrophobic ligand binding pocket, which, combined with the previously validated three head group-interacting residues, now complete the mapping of the S1P ligand recognition site. We identified six mutants (L3.43G/L3.44G, L3.43E/L3.44E, L5.52A, F5.48G, V6.40L, and F6.44G) that maintained wild type [32P]S1P binding with abolished ligand-dependent activation by S1P. These data suggest a role for these amino acids in the conformational transition of S1P1 to its activated state. Three aromatic mutations (F5.48Y, F6.44G, and W6.48A) result in differential activation, by S1P or SEW2871, indicating that structural differences between the two agonists can partially compensate for differences in the amino acid side chain. The now validated ligand binding pocket provided us with a pharmacophore model, which was used for in silico screening of the NCI, National Institutes of Health, Developmental Therapeutics chemical library, leading to the identification of two novel nonlipid agonists of S1P1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号