首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Escape from parasitoids leave larvae vulnerable to predators and has unexpected outcomes for pest suppression
Authors:CA Paull  NA Schellhorn  R HilleRisLambers  AD Austin
Institution:1. Department of Mechanical Engineering Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;2. Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
Abstract:It is well recognised that interactions among multiple species of natural enemies can have important consequences for the population dynamics of the species involved, particularly when intra-guild predation (IGP) occurs. However, these interactions are highly dependent on the type and behaviour of the prey, an aspect of IGP that is frequently overlooked. Here we demonstrate how a parasitoid (Dolichogenidea tasmanica) facilitates attack on a lepidopteran larva (Epiphyas postvittana) by a predatory mite (Anystis baccarum). We show that anti-predator behaviour of the lepidopteran larva is the mechanism that facilitates this. E. postvittana is protected by its silken leaf roll which limits predation by the mite except when the larva is attacked by the parasitoid causing the larva to leave its shelter. We explored the implications of the interactions among these three species for pest suppression by modelling changes in mite density and mite predation intensity. The presence of mites (the IG predator) always leads to a decrease in ability of the parasitoid to control E. postvittana and, as mite predation intensity increases, the ability of the parasitoid to suppress E. postvittana decreases. The results from the experiment show a synergistic interaction, but results from the population model show an interaction resulting in pest release. These findings support the general idea that if uni-directional IGP occurs, and competition is strong between the top and intermediate predator, then a single best control agent will likely be more effective at suppressing the prey population than multiple control agents combined. These findings have important implications for the management of E. postvittana in vineyards across Southern Australia and for other multi-species systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号