首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mixed-valency with cyanides as terminal ligands: Diruthenium(III,II) complexes with the 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine bridge and variable co-ligands (CN vs. bpy or NH3)
Authors:Mónica M Vergara  Florencia Fagalde  Jan Fiedler  Monika Sieger
Institution:a INQUINOA-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, (T4000INI) San Miguel de Tucumán, Argentina
b J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
c Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
Abstract:New diruthenium complexes (PPN)4(NC)4Ru(μ-bptz)Ru(CN)4], (PPN)41, and (bpy)2Ru(μ-bptz)Ru(CN)4], 2, (PPN+ = bis(triphenylphospine)iminium; bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine; bpy = 2,2′-bipyridine), were synthesised and characterised by spectroscopic and electrochemical techniques. The comproportionation constant Kc = 107.0 of the mixed-valent species (NC)4Ru(μ-bptz)Ru(CN)4]3− as obtained by oxidation of 14 in CH3CN is much lower than the Kc = 1015.0 previously detected for (H3N)4Ru(bptz)Ru(NH3)4]5+, reflecting the competition between CN and bptz for the π-electron density of the metals. Comparison with several other bptz-bridged diruthenium(II,III) complexes reveals an approximate correlation between Kc and the diminishing effective π acceptor capacity of the ancillary terminal ligands. In addition to the intense MLCT absorption at λmax = 624 nm, the main IVCT (intervalence charge transfer) band of 13− was detected by spectroelectrochemistry at λmax = 1695 nm (in CH3CN; ε = 3200 M−1 cm−1). The experimental band width at half-height, Δν1/2 = 2700 cm−1, is slightly smaller than the theoretical value Δν1/2 = 3660 cm−1, calculated from the Hush approximation for Class II mixed-valent species. In agreement with comparatively moderate metal-metal coupling, the mixed-valent intermediate 13− was found to be EPR silent even at 4 K. The unsymmetrical mixed-valent complex (bpy)2RuII(μ-bptz)RuIII(CN)4]+, obtained in situ by bromine oxidation of 2 in CH3CN/H2O, displays a broad NIR absorption originating from an IVCT transition at λmax = 1075 nm (ε ≈ 1000 M−1 cm−1, Δν1/2 ≈ 4000 cm−1). In addition, the lifetime of the excited-state of the mononuclear precursor complex Ru(bptz)(CN)4]2− was measured in H2O by laser flash photolysis; the obtained value of τ = 19.6 ns reveals that bptz induces a metal-to-ligand electronic delocalisation effect intermediate between that induced by bpy and bpz (bpz = 2,2′-bipyrazine) in analogous tetracyanoruthenium complexes.
Keywords:Cyano ligands  Mixed-valency  Ruthenium complexes  Spectroelectrochemistry  Tetrazine ligand
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号