Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor |
| |
Authors: | Obara Madoka Yakushi Toshiharu Kojima Seiji Homma Michio |
| |
Affiliation: | Division of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan. |
| |
Abstract: | Bacterial flagellar motors use specific ion gradients to drive their rotation. It has been suggested that the electrostatic interactions between charged residues of the stator and rotor proteins are important for rotation in Escherichia coli. Mutational studies have indicated that the Na(+)-driven motor of Vibrio alginolyticus may incorporate interactions similar to those of the E. coli motor, but the other electrostatic interactions between the rotor and stator proteins may occur in the Na(+)-driven motor. Thus, we investigated the C-terminal charged residues of the stator protein, PomA, in the Na(+)-driven motor. Three of eight charge-reversing mutations, PomA(K203E), PomA(R215E), and PomA(D220K), did not confer motility either with the motor of V. alginolyticus or with the Na(+)-driven chimeric motor of E. coli. Overproduction of the R215E and D220K mutant proteins but not overproduction of the K203E mutant protein impaired the motility of wild-type V. alginolyticus. The R207E mutant conferred motility with the motor of V. alginolyticus but not with the chimeric motor of E. coli. The motility with the E211K and R232E mutants was similar to that with wild-type PomA in V. alginolyticus but was greatly reduced in E. coli. Suppressor analysis suggested that R215 may participate in PomA-PomA interactions or PomA intramolecular interactions to form the stator complex. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|