首页 | 本学科首页   官方微博 | 高级检索  
     


Regulatory Role of the GTP-Binding Protein, Go, in the Mechanism of Exocytosis in Adrenal Chromaffin Cells
Authors:Mica Ohara-Imaizumi  Kimihiko Kameyama  Nobuyuki Kawae  Kyoko Takeda  Shun Muramatsu  Konosuke Kumakura
Affiliation:Life Science Institute, Sophia University, Tokyo, Japan.
Abstract:To elucidate the possible involvement of GTP-binding proteins (G proteins) in the mechanism of exocytosis, we studied effects of pertussis toxin (PTX), guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S), and antibodies against the G proteins (Gi and G(o)) on the secretory function of bovine adrenal chromaffin cells. Pretreatment of chromaffin cells with PTX resulted in an increase in acetylcholine-evoked catecholamine release. High K(+)-, histamine-, or gamma-aminobutyric acid-evoked catecholamine release was also potentiated by PTX pretreatment. The concentration of extracellular Ca2+ required for maximal release by 10(-4) M acetylcholine was decreased significantly in PTX-treated cells. In digitonin-permeabilized cells, PTX pretreatment resulted in a decrease of the half-maximal concentration (Km) of Ca2+ required for exocytosis with no significant change in the maximal stimulation (Vmax). Exposure of permeabilized cells to GTP-gamma-S (a nonhydrolyzable GTP analogue) inhibited Ca(2+)-dependent exocytosis by reducing the affinity for Ca2+. The effects of PTX pretreatment were mimicked by treatment of permeabilized cells with polyclonal antibodies selective for the alpha subunit of the PTX-sensitive G protein, G(o). Treatment with similar antibodies against the alpha subunit of Gi had no effect. These findings suggest that G(o) directly controls the Ca(2+)-triggered process in the machinery of exocytosis by lowering the affinity of the unknown target for Ca2+.
Keywords:Chromaffin cells    GTP-binding protein    Go    Exocytosis    Pertussis toxin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号