首页 | 本学科首页   官方微博 | 高级检索  
     


Sorting out the role of reactive oxygen species during plant programmed cell death induced by ultraviolet-C overexposure
Authors:Caiji Gao  Lingrui Zhang  Feng Wen  Da Xing
Affiliation:MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science; South China Normal University; Guangzhou, P.R. China
Abstract:
Previous studies have reported that light is required for activating Arabidopsis programmed cell death (PCD) induced by ultraviolet-C (UV-C) overexposure, and a caspase-like protease cleaving the caspase-3 substrate Asp-Glu-Val-Asp (DEVDase activity) is induced during this process. Our recent report has suggested that a quick burst of reactive oxygen species (ROS), which is mainly derived from mitochondria and chloroplasts, is induced in a light dependent manner during the early stages of UV-induced plant PCD. Concomitantly, the mitochondria undergo serious dysfunction including the MTP loss and the changes in distribution and mobility, which ultimately lead to apoptotic-cell death. Though some of signaling molecules have been elucidated in this type of plant cell death, the molecular mechanism about UV-induce Arabidopsis PCD is still poorly understood when comparing with the study of signaling pathways involved in animal cell apoptosis induced by UV. By using the Arabidopsis mesophyll protoplasts as a reference model, we have begun to shed light on the complexity of signaling pathway in UV-induced plant PCD. Recently we have tried to real-time detect the presence of caspase-like proteolytic activation, and to sort out the key role of ROS as well as to further assess the relationship between the ROS production and caspase-like activation in this type of plant apoptotic cell death.Key words: caspase-like activation, FRET, programmed cell death, reactive oxygen species, ultraviolet-CUltraviolet-C has been shown to be a very convenient trigger to induce PCD in plants and protoplasts.1,2 Others have shown that UV induction of plant PCD requires light and that caspase-like proteolytic activation is induced in this process.1 Our recent works have shown that ROS mainly localizing in mitochondria and chloroplasts are produced in a light dependent manner during the early stages of UV stress, and that ROS production and mitochondrial dysfunction play important roles during UV-induced Arabidopsis PCD (Fig. 1).2 We also found that if the Arabidopsis plants, which were kept at light for 1 h after UV irradiation then were moved to the dark and kept for 60 h, showed no evident plant death phenomena (unpublished data), though burst of ROS has appeared after UV exposure and subsequent 1 h light irradiation.2 In contrast, seedlings developed an obvious bleaching when kept in light for 60 h after UV treatment. These findings prompt us to carry out further investigations to dig out the role of ROS in the execution of this type of cell death, and to ask whether the produced ROS in the early stages is involved in the activation of caspase-like protease.Open in a separate windowFigure 1Hypothetical model of the signal transduction pathways in the plant programmed cell death induced by UV-C overexposure. After UV and light treatment a quick burst of ROS appear in the region of mitochondria and chloroplasts, then the mitochondria undergo functional dysfunction, which ultimately leads to cell death. Caspase-like activation and nucleus damage are also involved in the control of this type cell death. Solid line means the issues have been detected. Dotted line and question marks indicate events that have not been detected in this process. For detailed explanation, see the text.It has been reported that ROS is required for the release of cytochrome c (cyt c) and subsequent activation of caspase-like proteases during heat-shock induced plant PCD, and the addition of caspase inhibitors (zVAD-fmk or AC-DEVD-CHO) can prevent the degradation of cyt c and protect the plant cells from cell death.3 Thus these findings suggest that ROS can trigger the release of cyt c, but do not cause cell death, which requires caspase-like activation.3 Conversely, caspase inhibitors have also shown to effectively block the oxidative burst and the plant cell death induced by camptothecin incubation.4 These studies suggest the complex relationship between ROS production and caspase activation during execution of plant PCD event. The ROS production and the mitochondrial dysfunction during UV-induced plant PCD have been illustrated in our research. We have suggested the occurrence of MTP disruption during UV stress; however, whether cyt c is released from mitochondria has not been assessed (Fig. 1). The important roles of cyt c release and subsequent caspase activation have been suggested in various types of programmed cell death including mammal and plant cells.3,5,6 It will be a very challenging work to detect whether cyt c is released from mitochondria and is involved in the caspase-like proteolytic activation, and to further elucidate the relationship between ROS production and caspase-like activation in UV-induced plant PCD (Fig. 1).The involvement of caspase-like proteases in the control of cell death activation in plants has been shown in various forms of plant PCD.7 Using synthetic fluorogenic caspase-3 substrate, DEVD cleavage activity was detected during UV or heat shock-induced apoptosis of plant cells, and caspase inhibitors were able to suppress these types of cell death.1,3 Caspase-like activities have also been detected in plant hypersensitive response (HR) triggered by tobacco mosaic virus (TMV), or plant PCD induced by chemicals like camptothecin.8,9 All these experiments suggest the existence of functional caspase proteolytic activity in plant cells undergoing PCD. However, most of these results are from in vitro analysis using synthetic fluorogenic substrates or synthetic peptide inhibitor to caspases, this demand us to further dig out the plant caspase encoding gene and to real-time detect the caspase-like activity in vivo.Another of our ongoing work is aiming to detect the caspase-3-like proteolytic activation in living plant cells during UV-induced plant PCD, which is achieved by using the fluorescence resonance energy transfer (FRET) technique. FRET is the phenomenon whereby a fluorescent molecule—the donor—transfers energy by a nonradiative (through space) mechanism to a neighboring chromophore - the acceptor.10 FRET as a powerful technique to monitor compartmentation and subcellular targeting as well as to visualize protein-protein interactions and proteases activity in living cells has gained increasing importance for biotechnological applications during the last few years.11 During the past few years FRET technique has been successfully used to monitor interactions and distances between molecules in living plant cells.1214 Presently, we have constructed a recombinant caspase substrate to monitor caspase-3-like protease activation in single living plant protoplast in real time. This recombinant is composed of enhanced cyan fluorescence protein (ECFP) as the FRET donor and enhanced yellow fluorescence protein (EYFP) as the acceptor, linked by peptides containing the caspase-3 cleavage sequence, DEVD (ECFP-DEVD-EYFP) as the papers demonstrated. 15 Arabidopsis mesophyll protoplasts have been successfully transiently transfected with our recombinant plasmid for expression of ECFP-DEVD-EYFP fusion proteins under control of the CaMV 35S promoter according to a modified procedure (as described previously, ref. 16). Preliminary experimental results have proved the feasibility of this method to real-time detect the caspase-like activation in living plant cells during UV-induced plant PCD.Using this FRET probe, we may real-time detect the caspase-like activation during UV-induced plant PCD, and elucidate the relationship between ROS production and caspase-like activation as well as verify our hypothesis that whether ROS is necessary for the activation of caspase-like proteases during this process. So the role of ROS in the execution of this type cell death can be further investigated. These subsequent researches will certainly increase our knowledge about the signal transduction pathways in UV-induced Arabidopsis PCD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号