首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The state transition mechanism—simply depending on light-on and -off in Spirulina platensis
Authors:Heng Li
Institution:Beijing National Laboratory for Molecular Sciences (BNLMS), Photochemistry Laboratory, P. O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing, 100080, P. R. China
Abstract:The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.
Keywords:APC  Allophycocynin  Chl  chlorophyll  C-PC  C-phycocyanin  DCMU  3-(3  4-dichlorophenyl)-1  1-dimethylurea  HEPES  2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid  PSI  photosystem I  PSII  photosystem II  PBS  phycobilisome
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号