首页 | 本学科首页   官方微博 | 高级检索  
     

应用近红外光谱法估测小麦叶片糖氮比
作者姓名:姚霞  王雪  黄宇  汤守鹏  田永超  曹卫星  朱艳
作者单位:(南京农业大学江苏省信息农业高技术研究重点实验室, 南京 210095)
摘    要:糖氮比能够反映作物碳氮代谢的协调程度,及时、准确地监测糖氮比对于作物氮素营养诊断和调控具有重要意义.本研究以不同年份、品种、施氮水平的小麦大田试验为基础,获取鲜叶和粉末状干叶近红外(NIR)光谱及糖氮比信息,分别运用偏最小二乘法(partial least squares, PLS)、BP神经网络(back propagation neural network, BPNN)和小波神经网络(wavelet neural network, WNN)3种方法建立了小麦叶片糖氮比预测模型,并利用随机选择的样品集对所建模型进行测试和检验.结果表明: 小麦鲜叶光谱模型预测性能不佳;而干叶片预测模型表现了较好的准确性,在1655~2378 nm谱区范围内基于3种方法构建的干叶粉末糖氮比估算模型,其预测均方根误差均低于0.3%,决定系数均高于0.9.比较而言,WNN法表现最佳.总体显示,近红外光谱法可以准确预测小麦叶片糖氮比状况,为科学诊断糖氮比提供了理论基础和技术途径.

关 键 词:近红外光谱   糖氮比   偏最小二乘法   BP神经网络   小波神经网络
点击此处可从《生态学杂志》浏览原始摘要信息
点击此处可从《生态学杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号