首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium regulation of thin filament movement in an in vitro motility assay.
Authors:E Homsher  B Kim  A Bobkova  and L S Tobacman
Institution:Department of Physiology, School of Medicine, UCLA 90025, USA. ehomsher@physiology.medsch.ucla.edu
Abstract:The ability of calcium to regulate thin filament sliding velocity was studied in an in vitro motility assay system using cardiac troponin and tropomyosin and rhodamine-phalloidin-labeled skeletal actin and skeletal heavy meromyosin to propel the filaments. Measurements showed that both the number of thin filaments sliding and their sliding speed (Sf) were dependent on the calcium concentration in the range of pCa 5 to 9. Thin filament motility was completely inhibited only if troponin and tropomyosin were added at a concentration of 100 nM to the motility assay solution and the pCa was more than 8. The filament sliding speed was dependent on the pCa in a noncooperative fashion (Hill coefficient = 1) and reached maximum at 5 microns/s at a pCa of 5. The number of filaments moving uniformly decreased from > 90% at pCa 5-6 to near zero in less than 1 pCa unit. This behavior may be explained by a hypothesis in which the regulatory proteins control the number of cross-bridge heads interacting with the thin filaments rather than the rate at which they individually hydrolyze ATP or translocate the thin filaments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号