首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatio-temporal analysis of development of basal roots of common bean (Phaseolus vulgaris L.)
Authors:Paramita Basu  Anupam Pal
Institution:Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur; Kanpur, Uttar Pradesh India
Abstract:Temporal development of roots is key to the understanding of root system architecture of plants which influences nutrient uptake, anchorage and plant competition. Using time lapse imaging we analyzed developmental patterns of length, growth angle, depth and curvature of Phaseolus basal roots from emergence till 48 h in two genotypes, B98311 and TLP19 with contrasting growth angles. In both genotypes all basal roots appeared almost simultaneously, but their growth rates varied which accounted for differences in root length. The growth angles of the basal roots fluctuated rapidly during initial development due to oscillatory root growth causing local bends. Beyond 24 h, as the root curvature stabilized, so did the growth angle. Therefore growth angle of basal roots is not a very reliable quantity for characterizing root architecture, especially during early seedling development. Comparatively, tip depth is a more robust measure of vertical distribution of the basal roots even during early seedling development.Key words: basal root, kinematics, root architecture, root growth, spatiotemporal analysis, root imagingVertical and horizontal placements of the roots in the soil influence plant performance through acquisition of below ground resources like water and nutrients, plant anchorage and intra- and inter-plant competition.14 Therefore the architecture of the root system plays important roles in regulating plant growth and yield, especially under abiotic stresses.5 As a seedling grows to become a mature plant, the root architecture develops continuously in response to various cues e.g., genotypic, environmental, hormonal, etc. Therefore studies of root architecture of plants of different ages are important for understanding the influence of these cues in regulating plant growth.The root scaffold of a plant is comprised of different types of roots with different functions. A mature common bean (Phaseolus vulgaris L.) plant has root system consisting of primary, adventitious, lateral and basal roots. Among these, the basal roots are typically the earliest emerging secondary roots from the hypocotyl6 forming a major part of the mature root system. We have recently demonstrated important differences in architectural traits of the basal roots of common bean in the early seedling stage between two contrasting class of genotypes and how auxin-ethylene interplay regulates these traits.7 While this study of basal roots at a fixed time allows assessment and comparison of root development up to that point of time, investigation of the temporal events of emergence and growth of the basal roots is important and complementary to the understanding of their architectural traits. Therefore in the present study, we examined the detailed developmental patterns of basal roots through time lapse imaging in two genotypes.We chose two bean genotypes with contrasting basal root growth angles (BRGA) relative to the gravity—B98311 producing basal roots of smaller BRGA (41.7° ± 14°) and TLP19 having roots of larger BRGA (56.4° ± 18°).8 The germinated seedling with 2–3 cm radical was transferred to the blue germination paper (Anchor Paper Co., St. Paul, MN), which was suspended in nutrient solution7 inside a growth chamber (ACMAS Technocracy Limited, Delhi, India) maintained at 25 ± 1°C. Time lapse photography was carried out for 48 h at 30 min intervals using Nikon D200 digital camera fitted with a macro lens to obtain high resolution digital images of the roots. Imaging started from the visibility of the protrusions of emerging basal root along the root-shoot interface. A computer program was developed in Matlab® 7.8 (Mathworks, Natick) to analyze the images semi-automatically. From every image the computer program identified the basal roots using contrast of color between the roots (mostly white) and the germination paper (blue). Root midlines were determined following the methodology of Miller et al.9 and smoothed using the method of overlapping polynomials. Length of the midline is root length. The angle between gravity and the line connecting the root tip to the base is BRGA.7 The vertical distance of the root tip from the base of the lowest emerging root along the gravity vector is tip depth. From the midline, root curvature was also determined using the equation κ=xyyx(x2+y2)3/2,(1) where x(x), y(s)] is coordinate of any point along the root midline, s is normalized distance along the midline, and the primes denote derivatives with respect to s. Here positive curvature signifies bending upward and vice versa.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号