首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Odd- and branched-chain fatty acids in milk fat from Holstein dairy cows are influenced by physiological factors
Authors:LL Sun  L Liu  JT Brenna  ZH Wu  L Ma  DP Bu
Institution:1. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;2. College of Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China;3. Departments of Nutrition and of Chemistry, Dell Pediatric Research Institute, University of Texas at Austin, TX 78705, USA;4. Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing 100193, China;5. Hunan Co-Innovation Center of Safety Animal Production, Changsha 410000, China
Abstract:Dairy products are the major source of odd- and branched-chain fatty acids (OBCFAs), a group of nutrients with emerging health benefits. The animal diet is known to influence milk fat OBCFAs of dairy cows; however, little is known about the effects of physiological factors. The objective of this study was to investigate the effects of parity and lactation stage on OBCFAs in milk fat of dairy cows. Holstein dairy cows (n = 157) were selected according to parity (first, second, third, or greater) and days in milk (DIM) (≤21 DIM, 21 < DIM ≤ 100, 100 < DIM ≤ 200, >200 DIM). All cows were fed the same total mixed ration for three weeks. Milk samples were collected during the last three days of each lactation stage for fatty acid (FA) analyses via gas chromatography. Results showed that first- and second-parity cows displayed significantly higher proportions and yields of iso-14:0, iso-15:0, iso-16:0, total iso-FA, and total branched-chain FA (P < 0.05) compared with other parities. The proportions of C17:0 and C17:1 cis-9 were also greater in first-parity cows (P < 0.05), while the yields of C17:0 and C17:1 cis-9 were similar among different parities (P > 0.05). The proportions of total OBCFAs were greater in first- and second-parity cows (P < 0.05), whereas the highest yield was observed in second-parity cows. Lactation dairy cows in ≤ 21 DIM group displayed lower proportions of iso-13:0, anteiso-13:0, C13:0, iso-14:0, C15:0, iso-16:0, total iso-FA, and total OBCFAs compared with that of the other groups (P < 0.05), and also lower yields of iso-14:0 and iso-16:0 (P < 0.05). In contrast, C17:0 and C17:1 cis-9 proportions and yields were higher in dairy cows with ≤ 21 DIM (P < 0.05). Iso-17:0 and anteiso-17:0 were not affected by lactation stage (P > 0.05). Taken together, our data showed that both parity and lactation stage have considerable effects on milk fat OBCFAs of dairy cows. In summary, first- and second-parity cows had higher milk OBCFAs compared with later parity cows, and OBCFAs with medium chain lengths were lower in dairy cows with ≤ 21 DIM, while C17:0 and C17:1 cis-9 were higher. These findings show that milk OBCFA contents are differentially modulated by physiological state. They will be useful in future studies that seek to alter OBCFA composition of Holstein dairy cow milk fats.
Keywords:Fatty acid  Lactating cows  Lactation stage  Milk fat  Parity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号