Regulation of CO2-fixation in Chlorella by light of varied wavelengths and intensities |
| |
Authors: | OGASAWARA, NORIKO MIYACHI, SHIGETOH |
| |
Affiliation: | Institute of Applied Microbiology, University of Tokyo and Tokugawa Institute for Biological Research Tokyo, Japan |
| |
Abstract: | 1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm2sec1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400500 erg cm2 sec1) was citrulline.At higher light intensities (4,0007,000 erg cm2sec1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; ) |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|