首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impacts of enhanced UVB radiation on photosynthetic characteristics of the marine diatom <Emphasis Type="Italic">Phaeodactylum tricornutum</Emphasis> (Bacillariophyceae,Heterokontophyta)
Authors:Kunpeng Shi  Jia Yu  Chengyue Liu  Zhimeng Xu  Xuexi Tang
Institution:1.Department of Marine Ecology, College of Marine Life Sciences,Ocean University of China,Qingdao,China;2.Laboratory of Phycology and Algae Aquaculture, College of Fisheries,Ocean University of China,Qingdao,China
Abstract:Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号