首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of flavin semiquinone reduction of the components of the cytochrome c-cytochrome b5 complex
Authors:L Eltis  A G Mauk  J T Hazzard  M A Cusanovich  G Tollin
Institution:Department of Biochemistry, University of British Columbia, Vancouver, Canada.
Abstract:The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号