首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and characterization of multi-charge mass spectra for peptide sequencing
Authors:Chong Ket Fah  Ning Kang  Leong Hon Wai  Pevzner Pavel
Affiliation:Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore. chongket@comp.nus.edu.sg
Abstract:Peptide sequencing using tandem mass spectrometry data is an important and challenging problem in proteomics. We address the problem of peptide sequencing for multi-charge spectra. Most peptide sequencing algorithms currently consider only charge one or two ions even for higher-charge spectra. We give a characterization of multi-charge spectra by generalizing existing models. Using our models, we analyzed spectra from Global Proteome Machine (GPM) [Craig R, Cortens JP, Beavis RC, J Proteome Res 3:1234-1242, 2004.] (with charges 1-5), Institute for Systems Biology (ISB) [Keller A, Purvine S, Nesvizhskii AI, Stolyar S, Goodlett DR, Kolker E, OMICS 6:207-212, 2002.] and Orbitrap (both with charges 1-3). Our analysis for the GPM dataset shows that higher charge peaks contribute significantly to prediction of the complete peptide. They also help to explain why existing algorithms do not perform well on multi-charge spectra. Based on these analyses, we claim that peptide sequencing algorithms can achieve higher sensitivity results if they also consider higher charge ions. We verify this claim by proposing a de novo sequencing algorithm called the greedy best strong tag (GBST) algorithm that is simple but considers higher charge ions based on our new model. Evaluation on multi-charge spectra shows that our simple GBST algorithm outperforms Lutefisk and PepNovo, especially for the GPM spectra of charge three or more.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号