首页 | 本学科首页   官方微博 | 高级检索  
     


Expression,Characterization, and Cellular Localization of Knowpains,Papain-Like Cysteine Proteases of the Plasmodium knowlesi Malaria Parasite
Authors:Rajesh Prasad  Atul   Awakash Soni  Sunil Kumar Puri  Puran Singh Sijwali
Affiliation:1. CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India.; 2. CSIR-Parasitology Division, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.; Université Pierre et Marie Curie, France,
Abstract:Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries against knowpains for developing broadly effective compounds active against multiple human malaria parasites.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号