首页 | 本学科首页   官方微博 | 高级检索  
     


Rho-kinase mediates spinal nitric oxide formation by prostaglandin E2 via EP3 subtype
Authors:Matsumura Shinji  Abe Tetsuya  Mabuchi Tamaki  Katano Tayo  Takagi Kunio  Okuda-Ashitaka Emiko  Tatsumi Shinichi  Nakai Yoshihide  Hidaka Hiroyoshi  Suzuki Masaaki  Sasaki Yasuharu  Minami Toshiaki  Ito Seiji
Affiliation:Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan.
Abstract:
Prostaglandin E2 (PGE2), the principal pro-inflammatory prostanoid, is known to play versatile roles in pain transmission via four PGE receptor subtypes, EP1-EP4. We recently demonstrated that continuous production of nitric oxide (NO) by neuronal NO synthase (nNOS) following phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) and NMDA receptor NR2B subunits is essential for neuropathic pain. These phosphorylation and nNOS activity visualized by NADPH-diaphorase histochemistry were blocked by indomethacin, a PG synthesis inhibitor. To clarify the interaction between cyclooxygenase and nNOS pathways in the spinal cord, we examined the effect of EP subtype-selective agonists on NO production. NO formation was stimulated in the spinal superficial layer by EP1, EP3, and EP4 agonists. While the EP1- and the EP4-stimulated NO formation was markedly blocked by MK-801, an NMDA receptor antagonist, the EP3-stimulated one was completely inhibited by H-1152, a Rho-kinase inhibitor. Phosphorylation of MARCKS and NADPH-diaphorase activity stimulated by the EP3 agonist were also blocked by H-1152. These results suggest that PGE2 stimulates NO formation by Rho-kinase via EP3, a mechanism(s) different from EP1 and EP4.
Keywords:Prostaglandin E2   Nitric oxide   EP1   EP3   Myristoylated alanine-rich C-kinase substrate   Spinal cord   Rho-kinase   Neuropathic pain
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号