首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effects of organic carbon, ammoniacal-nitrogen, and oxygen partial pressure on the stratification of membrane-aerated biofilms
Authors:Timothy M LaPara  Alina C Cole  John W Shanahan  Michael J Semmens
Institution:(1) Department of Civil Engineering, University of Minnesota, 122 Civil Engineering, 500 Pillsbury Drive SE, Minneapolis, MN 55455, USA
Abstract:The purpose of this study was to examine the effects of different nutrient (carbon, nitrogen, oxygen) concentrations on the microbial activity and community structure in membrane-aerated biofilms (MABs). MABs were grown under well-defined conditions of fluid flow, substrate concentration, and membrane oxygen partial pressure. Biofilms were then removed and thin-sliced using a cryostat/microtome parallel to the membrane. Individual slices were analyzed for changes with depth in biomass density, respiratory activity, and the population densities of ammonia-oxidizing and denitrifying bacteria populations. Oxygen-sensing microelectrodes were used to determine the depth of oxygen penetration into each biofilm. Our results demonstrated that ammonia-oxidizing bacteria grow near the membrane, while denitrifying bacteria grow a substantial distance from the membrane. However, nitrifying and denitrifying bacteria did not grow simultaneously when organic concentrations became too high or ammonia concentrations became too low. In conclusion, membrane-aerated biofilms exhibit substantial stratification with respect to community structure and activity. A fundamental understanding of the factors that control this stratification will help optimize the performance of full-scale membrane-aerated biofilm reactors for wastewater treatment.
Keywords:Biofilms  Hybrid bioreactor  MABR  Membrane aeration  Nutrient removal
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号