首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time-Resolved Resonance Raman Investigation of Oxygen Reduction Mechanism of Bovine Cytochrome c Oxidase
Authors:Teizo Kitagawa  Takashi Ogura
Institution:(1) Institute for Molecular Science, Okazaki National Research Institutes, Myodaiji, Okazaki, 444-8585, Japan
Abstract:Six oxygen-associated resonance Raman bands were identified for intermediates in the reaction of bovine cytochrome c oxidase with O2 at room temperature. The primary intermediate, corresponding to Compound A of cryogenic measurements, is an O2 adduct of heme a 3 and its isotope frequency shifts for 16O18O have established that the binding is of an end-on type. This is followed by two oxoheme intermediates, and the final intermediate appearing around 3 ms is the Fe–OH heme. The reaction rate between the two oxoheme intermediates is significantly slower in D2O than in H2O, suggesting that the electron transfer is regulated by proton translocations at this step. It is noted that the reaction intermediates of oxidized enzyme with hydrogen peroxide yield the same three sets of oxygen isotope-sensitive bands as those of oxoheme intermediates seen for O2 reduction and that the O–O bond has already been cleaved in the so-called peroxy form (or 607 nm form).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号