Assessing Population Viability of Black Bears using Spatial Capture-Recapture Models |
| |
Authors: | Michael J. Hooker Richard B. Chandler Bobby T. Bond Michael J. Chamberlain |
| |
Affiliation: | 1. Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green Street, Athens, GA, 30602 USA;2. Georgia Department of Natural Resources, Wildlife Resources Division, 1014 MLK Boulevard, Fort Valley, GA, 31030 USA |
| |
Abstract: | The Central Georgia Bear Population (CGP) is the least abundant and most isolated of Georgia's 3 American black bear (Ursus americanus) populations. Beginning in 2011, changes to regulations governing harvest of the CGP resulted in an increase in female bear harvest, creating concern that future harvest could be an important influence on population viability. Hence, our objective was to assess viability of the CGP under various levels of female mortality. During 2012–2016, we used barbed-wire hair snares to collect bear hair samples from within the range of the CGP in Georgia, USA. We used microsatellite genotyping to identify individual bears and created robust-design, spatial detection histories for all female bears detected. We fit open population spatial capture-recapture (SCR) models to the detection histories in a Bayesian framework. We used the Widely Applicable Information Criterion (WAIC) to rank models that varied with respect to sources of variation in detection probability, survival, and per capita recruitment, and used the model with the lowest WAIC to forecast dynamics of the CGP 50 years into the future under various levels of female mortality. We assessed the 50-year extinction probability under a continuation of mortality levels documented during 2012–2016, and under incremental increases in female mortality above this baseline. The top model included density-dependent per capita recruitment, annual variation in detection probability, and a trap-level behavioral response. Abundance increased from 106 (95% CI = 86–132) females in 2012 to 136 (95% CI = 113–161) females in 2013 and remained relatively stable thereafter. Annual female survival was 0.75 (95% CI = 0.69–0.82) and did not vary among years. The per capita recruitment rate decreased over time as density increased, and was 0.49 (95% CI = 0.33–0.66) during the first time interval and 0.29 (95% CI = 0.20–0.38) during the final time interval. Annual growth rate () was 1.28 (95% CI = 1.07–1.52) between 2012 and 2013 but decreased throughout the study, ending at 1.04 (95% CI = 0.93–1.17). Forecasts indicated continuation of the female mortality levels experienced from 2012–2016 were sustainable over 50 years, with the estimated extinction risk being <0.001%. Increasing annual harvest by 5 females introduced a negligible increase in the 50-year probability of extinction, but harvesting an additional 10 females/year caused extinction risk to rise to 1.15%. We recommend that harvest regulations are structured such that mortality rates remain at current levels or do not increase by more than an annual average of 5 females above levels observed during our study. Furthermore, we recommend that managers continue to monitor the population so that harvest regulations and population models can be refined over time. © 2020 The Wildlife Society. |
| |
Keywords: | American black bear Bayesian capture-mark-recapture demographics Georgia harvest population viability analysis Ursus americanus |
|
|